Topology optimization of stability‐constrained structures with simple/multiple eigenvalues

Author:

Zhang Guodong1ORCID,Khandelwal Kapil2ORCID,Guo Tong1

Affiliation:

1. School of Civil Engineering Southeast University, Jiulonghu Campus Nanjing China

2. Department of Civil and Environmental Engineering and Earth Sciences University of Notre Dame Notre Dame Indiana USA

Abstract

AbstractThis work focuses on topology optimization formulations with linear buckling constraints wherein eigenvalues of arbitrary multiplicities can be canonically considered. The non‐differentiability of multiple eigenvalues is addressed by a mean value function which is a symmetric polynomial of the repeated eigenvalues in each cluster. This construction offers accurate control over each cluster of eigenvalues as compared to the aggregation functions such as ‐norm and Kreisselmeier–Steinhauser (K–S) function where only approximate maximum/minimum value is available. This also avoids the two‐loop optimization procedure required by the use of directional derivatives (Seyranian et al. Struct Optim. 1994;8(4):207‐227.). The spurious buckling modes issue is handled by two approaches—one with different interpolations on the initial stiffness and geometric stiffness and another with a pseudo‐mass matrix. Using the pseudo‐mass matrix, two new optimization formulations are proposed for incorporating buckling constraints together with the standard approach employing initial stiffness and geometric stiffness as two ingredients within generalized eigenvalue frameworks. Numerical results show that all three formulations can help to improve the stability of the optimized design. In addition, post‐nonlinear stability analysis on the optimized designs reveals that a higher linear buckling threshold might not lead to a higher nonlinear critical load, especially in cases when the pre‐critical response is nonlinear.

Funder

National Natural Science Foundation of China

US NSF

Publisher

Wiley

Subject

Applied Mathematics,General Engineering,Numerical Analysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3