Bisphenol S stimulates Leydig cell proliferation but inhibits differentiation in pubertal male rats through multiple mechanisms

Author:

Pan Peipei1,Wen Zina2,Ma Feifei3,Lei Zhen2,Pan Chengshuang1,Fei Qianjin1,Tian Erpo2,Wang Yiyan3,Zhu Qiqi3,Li Huitao3,Li Xiaoheng3,Zhong Ying2,Ge Ren‐Shan3,Xu Ren‐ai4

Affiliation:

1. Department of Reproductive Medicine The First Affiliated Hospital of Wenzhou Medical University Wenzhou China

2. Department of Andrology Chengdu Xi'nan Gynecological Hospital Chengdu China

3. Department of Obstetrics and Gynecology The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University Wenzhou China

4. Department of Pharmacy The First Affiliated Hospital of Wenzhou Medical University Wenzhou China

Abstract

AbstractBisphenol S (BPS) is a novel bisphenol A (BPA) analogue, a ubiquitous environmental pollutant that disrupts male reproductive system. Whether BPS affects Leydig cell maturation in male puberty remains unclear. Male Sprague–Dawley rats (age of 35 days) were daily gavaged to 0, 1, 10, 100, and 200 mg/kg/day from postnatal days 35–56. BPS at 1–10 mg/kg/day and higher doses markedly reduced serum testosterone and progesterone levels but it at 200 mg/kg/day significantly increased estradiol level. BPS at 100 and 200 mg/kg/day significantly elevated serum luteinizing hormone (LH) levels. BPS at 1–10 mg/kg/day and higher doses significantly reduced inhibin A and inhibin B levels. BPS at 100 and 200 mg/kg/day markedly increased CYP11A1+ Leydig cell number, but did not affect HSD11B1+ (a mature Leydig cell marker) cell number. BPS at 10 mg/kg/day and higher doses significantly downregulated the expression of Cyp11a1 and at 100 and 200 mg/kg/d significantly lowered Cyp17a1, Hsd11b1, and Nr5a1 in the testes. BPS at 100 and/or 200 mg/kg/day significantly elevated Lhb in the pituitary. BPS at 100 and 200 mg/kg/day significantly increased the phosphorylation of AKT1, AKT2, and CREB without affecting total AKT1, AKT2, and CREB levels. BPS at 1–100 μM significantly suppressed testosterone production and induced proliferation of primary immature Leydig cells after 24 h of treatment and these actions were reversed by estrogen receptor α antagonist, ICI 182780, and partially reversed by vitamin E. BPS at 0.1–10 μM significantly increased oxidative stress of Leydig cells in vitro. BPS also directly inhibited 17β‐hydroxysteroid dehydrogenase 3 activity at 10–100 μM. In conclusion, BPS causes hypergonadotropic androgen deficiency in male rats during pubertal exposure via activating ESR1 and inducing ROS in immature Leydig cells and directly inhibiting 17β‐hydroxysteroid dehydrogenase 3 activity.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3