Multitargeted inhibition of key enzymes associated with diabetes and Alzheimer's disease by 1,3,4‐oxadiazole derivatives: Synthesis, in vitro screening, and computational studies

Author:

Fatima Bibi1,Saleem Faiza1,Salar Uzma2,Chigurupati Sridevi3,Felemban Shatha G.4,Ul‐Haq Zaheer2,Tariq Syeda S.2,Almahmoud Suliman A.3,Taha Muhammad5,Shah Syed T. A.6,Khan Khalid M.1ORCID

Affiliation:

1. H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan

2. Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan

3. Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy Qassim University Buraidah Saudi Arabia

4. Department of Medical Laboratory Science Fakeeh College for Medical Sciences Jeddah Saudi Arabia

5. Department of Clinical Pharmacy Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University Dammam Saudi Arabia

6. Department of Education Sukkur IBA University Sukkur Pakistan

Abstract

AbstractA library of 22 derivatives of 1,3,4‐oxadiazole‐2‐thiol was synthesized, structurally characterized, and assessed for its potential to inhibit α‐amylase, α‐glucosidase, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and antioxidant activities. Most of the tested compounds demonstrated good to moderate inhibition potential; however, their activity was lower than that of the standard acarbose. Significantly, compound 3f exhibited the highest inhibition potential against α‐glucosidase and α‐amylase enzymes, with IC50 values of 18.52 ± 0.09 and 20.25 ± 1.05 µM, respectively, in comparison to the standard acarbose (12.29 ± 0.26; 15.98 ± 0.14 µM). Compounds also demonstrated varying degrees of inhibitory potential against AChE (IC50 = 9.25 ± 0.19 to 36.15 ± 0.12 µM) and BChE (IC50 = 10.06 ± 0.43 to 35.13 ± 0.12 µM) enzymes compared to the standard donepezil (IC50 = 2.01 ± 0.12; 3.12 ± 0.06 µM), as well as DPPH (IC50 = 20.98 ± 0.06 to 52.83 ± 0.12 µM) and ABTS radical scavenging activities (IC50 = 22.29 ± 0.18 to 47.98 ± 0.03 µM) in comparison to the standard ascorbic acid (IC50 = 18.12 ± 0.15; 19.19 ± 0.72). The kinetic investigations have demonstrated that the compounds exhibit competitive‐type inhibition for α‐amylase, noncompetitive‐type inhibition for α‐glucosidase and AChE, and mixed‐type inhibition for BChE. Additionally, a molecular docking study was performed on all synthetic oxadiazoles to explore the interaction details of these compounds with the active sites of the enzymes.

Publisher

Wiley

Subject

Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3