Nickel Metallaphotoredox Buchwald–Hartwig Amination Reactions: A Perspective on Irradiation Light Wavelength

Author:

Kuai Meiying1,Jia Zihan1,Chen Lijie1,Gao Shuang1,Fang Weiwei1ORCID

Affiliation:

1. Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering Nanjing Forestry University 159 Longpan Road 210037 Nanjing China

Abstract

AbstractThe construction of C−N bonds is considered one of the most useful reactions in synthetic chemistry due to their widespread presence in pharmaceuticals, natural products, etc. Pd‐catalyzed Buchwald–Hartwig amination (BHA) has provided the most efficient method to form (hetero)aryl amines but it required strong base and sophisticated ligands. In comparison, the combination of photocatalysis and nickel chemistry has revolutionized catalytic strategies and is emerging as a quintessence to realize BHA, termed as Ni‐metallaphotoredox BHA. To pursue a universal protocol, diverse photocatalysts were designed and employed in Ni‐metallaphotoredox BHA, and smoothly promoted C−N bond formations under irradiation of light from ultraviolet to red light, respectively. Note that the matching of photocatalyst and light was critical for success. Therefore, this review mainly focuses on the discussion of Ni‐metallaphotoredox BHA according to the irradiation light's wavelength, covering ultraviolet, purple, blue, red, and white light as well as solar light. We try to find a clue in the relationship of structure‐photophysical behaviors of photocatalysts under the same or different irradiation light. At last, current limitations and potential trends for advancing Ni‐metallaphotoredox BHA are highlighted. We deem that it could encourage chemists to continue designing suitable photocatalyst for C−N bond formations under sunlight mimicking plants’ photosynthesis.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

Subject

Organic Chemistry,Physical and Theoretical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3