Effects of the Tibetan Plateau on the onsetof the summer monsoon in South Asia: The role of the air‐sea interaction

Author:

Abe Manabu12,Hori Masatake3,Yasunari Tetsuzo4,Kitoh Akio5

Affiliation:

1. Graduate School of Environmental Studies Nagoya University Nagoya Japan

2. Now at Arctic Environment Research Center National Institute of Polar Research Tachikawa Tokyo Japan

3. Research Institute for Global Change Japan Agency of Marine‐Earth Science and Technology Yokosuka Japan

4. Hydrospheric and Atmospheric Research Center Nagoya University Nagoya Japan

5. Meteorological Research Institute Tsukuba Japan

Abstract

Using both a coupled atmosphere‐ocean general circulation model (GCM) and an atmospheric GCM, we investigate the effects of the Tibetan Plateau (TP) on the onset of the South Asian summer monsoon by conducting simulations with and without the TP. In the coupled GCM, the presence of the TP causes the monsoon onset to occur approximately 15 days later in the Arabian Sea (AS) and India (ID) and approximately 10 days earlier in the Bay of Bengal (BB). These changes are attributed to different atmospheric circulation patterns and different conditions within the adjacent oceans, such as the AS and the BB. When the TP is included, lower sea surface temperatures (SSTs) in the AS contribute to a stable lower atmosphere, which suppresses convection over the AS and ID in May. In contrast, low pressure over South Asia, caused by the TP, induces a southwesterly toward the BB that transports a substantial amount of water vapor to the BB. This flow results in an earlier monsoon in the BB. Without the TP, higher SSTs that are formed in the AS in May destabilize the lower atmosphere and create a depression, resulting in an earlier onset of the monsoon over the AS and ID. Consequently, the cyclonic circulation spreads abruptly to the BB, and precipitation begins to increase over the BB. Therefore, the air‐sea interaction in the adjacent ocean under the influence of the TP strongly modulates the onset of the South Asian summer monsoon. This modulation was verified by the atmospheric GCM experiments.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3