Fixed‐time prescribed performance optimization control for the speed and tension system of the cold strip rolling mill with output constraints

Author:

Liu Le12ORCID,Li Qinghua12,Lin Zhipeng12,Fang Yiming12

Affiliation:

1. Engineering Research Center of Intelligent Control System and Intelligent Equipment of Ministry of Education, Yanshan University Qinhuangdao Hebei 066004 People's Republic of China

2. Key Laboratory of Intelligent Rehabilitation and Neromodulation of Hebei Province Yanshan University Qinhuangdao Hebei 066004 People's Republic of China

Abstract

SummaryFor the speed and tension system of the reversible cold strip rolling mill with output constraints, parameter perturbations and load disturbance, a fixed‐time prescribed performance optimization control method is proposed based on disturbance observers in this article. First, the disturbance observers are constructed to estimate the system's unmatched uncertainties, and the observer errors can converge in fixed time. Second, a time‐varying logarithmic barrier Lyapunov function (TLBLF) is given and combined with the command filtered backstepping approach, the fixed‐time control and the prescribed performance control to complete the controller designs for the speed and tension system of the cold strip rolling mill, which make the system states converge in fixed time and are always constrained within predefined ranges. Third, particle swarm optimization‐gray wolf optimization (PSO_GWO) hybrid intelligent algorithm is used to optimize the main control parameters of the designed controllers, which further improves the convergence speed and steady‐state accuracy of the rolling mill system. Theoretical analysis proves that the proposed control method can ensure the closed‐loop system is stable in fixed time. Finally, the simulation comparison study is carried out by using the field actual data of a reversible cold strip mill system, and the simulation results verify the effectiveness of the proposed control method.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3