Revealing cation and metal gradients in and underneath passive films of the stainless steel 1.4652 in acidic and alkaline electrolytes with angular resolved dual energy X‐ray photo‐electron spectroscopy

Author:

Olsson Claes‐Olof A.1ORCID,Hauert Roland2ORCID,Neus Igual‐Muñoz Anna1ORCID,Mischler Stefano1ORCID,Schmutz Patrik2ORCID

Affiliation:

1. Tribology and Interfacial Chemistry Group TIC‐IMX‐EPFL Lausanne Switzerland

2. Joining Technologies and Corrosion EMPA Duebendorf Switzerland

Abstract

AbstractPassive films on the superaustenitic stainless steel 1.4652 were studied using angular resolved hard X‐ray photo‐electron spectroscopy (HAXPES), which provides an increased information depth compared to conventional X‐ray photo‐electron spectroscopy (XPS). Elemental depth profiles in the oxide as well as gradients in the underlying metal were established using a dedicated algorithm. The utility was exemplified for three different conditions of film formation: (i) as polished and as polarized to the high passive end in (ii) 1 M H2SO4 and (iii) 1 M NaOH. The use of a superaustenitic material ascertained that metal signals from the main contributors to film formation: Fe, Cr, Ni, and Mo remained above the detection limit throughout the data set. With the dual‐source technique (XPS, HAXPES), it was possible to investigate metal gradients underneath the passive film. For polarizations in an acidic environment, a metallic nickel enrichment of the order of 5 Å was found. For a corresponding polarization in an alkaline environment, the metal region closest to the oxide/metal interface was enriched in iron, followed by concentration gradients down to about 50 Å into the metal.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3