Two‐sample testing for random graphs

Author:

Wen Xiaoyi1ORCID

Affiliation:

1. Institute of Statistics and Big Data, Renmin University of China Beijing China

Abstract

AbstractThe employment of two‐sample hypothesis testing in examining random graphs has been a prevalent approach in diverse fields such as social sciences, neuroscience, and genetics. We advance a spectral‐based two‐sample hypothesis testing methodology to test the latent position random graphs. We propose two distinct asymptotic normal statistics, each optimally designed for two different models—the elementary Erdős–Rényi model and the more complex latent position random graph model. For the latter, the spectral embedding of the adjacency matrix was utilized to estimate the test statistic. The proposed method exhibited superior efficacy as it accomplished higher power than the conventional method of mean estimation. To validate our hypothesis testing procedure, we applied it to empirical biological data to discern structural variances in gene co‐expression networks between COVID‐19 patients and individuals who remained unaffected by the disease.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3