First‐Principles Investigations of Structural, Electronic, and Elastic Properties of ZrSiO3 Perovskite: Layer Dependence, Surface Termination, and Pressure Effects

Author:

Pokharel Peshal123,Yadav Shashit Kumar2ORCID,Pantha Nurapati1,Adhikari Devendra2ORCID

Affiliation:

1. Central Department of Physics Tribhuvan University Kritipur 44618 Nepal

2. Department of Physics Mahendra Morang Adarsh Multiple Campus Tribhuvan University Biratnagar 56613 Nepal

3. Department of Physics Central Campus of Technology Tribhuvan University Dharan 56700 Nepal

Abstract

Zirconium silicate (ZrSiO3) perovskite is a promising material for various technological applications. The structural, electronic, and thermodynamic properties of ZrSiO3 perovskite are studied under different conditions, including pressure and layer configuration variations using density functional theory. The present investigation includes a thorough analysis of 2D perovskite derivatives derived from its basic 3D structure. The bulk and surface‐terminated silicon‐dominant SiO2 and zirconium‐dominant ZrO compounds are found to be mechanically stable with an anisotropy factor above 1. The calculated indirect‐bandgap values for the ZrO termination and SiO2 termination are found to be 2.585 and 1.639 eV, respectively. Moreover, the pore size of the SiO2‐terminated slab model of ZrSiO3 is calculated to be 105.39 μm and that for ZrO‐termination to be 129.30 μm. Thus, the material considered for the study can have potential applications in bone regeneration and tissue engineering. Further, the possibilities for modifying ZrSiO3 for uses in electrical devices, sensors, sustainable energy materials, and even biomedical applications like tissue engineering are intriguingly expanded by the present findings.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3