Homoepitaxy Growth of High‐Quality AlN Film on MOCVD AlN Template by Hydride Vapor Phase Epitaxy

Author:

Li Chunpeng12ORCID,Gao Xiaodong2,Wang Xiaodan3,Dong Xiaoming2,Zeng Xionghui12,Chen Jiafan2,Wang Chuang12,Wang Luhua2,Chen Jingjing2,Wei Sida12,Xu Ke1245

Affiliation:

1. School of Nano-Tech and Nano-Bionics University of Science and Technology of China Hefei 230026 China

2. Suzhou Institute of Nano-tech and Nano-bionics Chinese Academy of Sciences 12 Suzhou 215123 China

3. Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application School of Physical Science and Technology Suzhou University of Science and Technology Suzhou 215009 China

4. Shenyang National Laboratory for Materials Science Jiangsu Institute of Advanced Semiconductors NW-20, Nanopolis Suzhou 99 Jinji Lake Avenues Suzhou Industrial Park Souzhou 215123 Jiangsu China

5. Suzhou Nanowin Science and Technology Co., Ltd. Suzhou 215123 China

Abstract

Herein, AlN film grown on metal‐organic chemical vapor deposition (MOCVD) AlN template by high‐temperature hydride vapor phase epitaxy (HVPE) is characterized. High‐resolution X‐ray diffraction results show that the crystal quality of the film is improved compared with that of the template. Atomic force microscopy shows that the root mean square roughness value also decreases. Cathodoluminescence spectra show that the main impurities in the epitaxial layer and template are oxygen atoms. Raman spectroscopy and geometric phase analysis show that HVPE AlN samples maintain a compressive stress internally, which is the key to inhibit film cracking. Transmission electron microscope characterization reveals that most of the dislocations at the interface inherit from MOCVD AlN template, incline in the subsequent growth, react with each other, and finally annihilate. The dislocation bending and reduction mechanism are demonstrated.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3