Affiliation:
1. Institute of Experimental Physics and Center for Materials Research Justus-Liebig-Universität Gießen Heinrich-Buff-Ring 16 35392 Gießen Germany
2. Department of Physics and Material Sciences Center Philipps-Universität Marburg Renthof 5 35032 Marburg Germany
Abstract
The ongoing miniaturization of semiconductor devices renders charge‐carrier transport along interfaces increasingly important. The characteristic length scales in state‐of‐the‐art semiconductor technology span only a few nanometers. Consequently, charge‐carrier transport inevitably occurs directly at interfaces between adjacent layers rather than being confined to a single material. Herein, charge‐carrier diffusion is systematically studied in prototypical active layer systems, namely, in type‐I direct‐gap quantum wells and in type‐II heterostructures. The impact of internal interfaces is revealed in detail as charge‐carrier diffusion takes place much closer to or even across the internal interfaces in type‐II heterostructures. Type‐I quantum wells and type‐II heterostructures exhibit comparable diffusion rates given similar inhomogeneous exciton linewidths. Consequently, the changes in the structural quality of the interfaces are responsible for changes in diffusion and charge‐carrier transport along interfaces rather than the existence of the interfaces themselves.
Funder
Deutsche Forschungsgemeinschaft
European Regional Development Fund
Subject
Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Stochastic simulation of exciton transport in semiconductor heterostructures;Russian Journal of Numerical Analysis and Mathematical Modelling;2024-06-01