The Influence of Internal Interfaces on Charge‐Carrier Diffusion in Semiconductor Heterostructures

Author:

Mengel Nils1ORCID,Gümbel Lukas1ORCID,Klement Philip1ORCID,Fey Melanie1,Fuchs Christian2ORCID,Volz Kerstin2ORCID,Chatterjee Sangam1ORCID,Stein Markus1ORCID

Affiliation:

1. Institute of Experimental Physics and Center for Materials Research Justus-Liebig-Universität Gießen Heinrich-Buff-Ring 16 35392 Gießen Germany

2. Department of Physics and Material Sciences Center Philipps-Universität Marburg Renthof 5 35032 Marburg Germany

Abstract

The ongoing miniaturization of semiconductor devices renders charge‐carrier transport along interfaces increasingly important. The characteristic length scales in state‐of‐the‐art semiconductor technology span only a few nanometers. Consequently, charge‐carrier transport inevitably occurs directly at interfaces between adjacent layers rather than being confined to a single material. Herein, charge‐carrier diffusion is systematically studied in prototypical active layer systems, namely, in type‐I direct‐gap quantum wells and in type‐II heterostructures. The impact of internal interfaces is revealed in detail as charge‐carrier diffusion takes place much closer to or even across the internal interfaces in type‐II heterostructures. Type‐I quantum wells and type‐II heterostructures exhibit comparable diffusion rates given similar inhomogeneous exciton linewidths. Consequently, the changes in the structural quality of the interfaces are responsible for changes in diffusion and charge‐carrier transport along interfaces rather than the existence of the interfaces themselves.

Funder

Deutsche Forschungsgemeinschaft

European Regional Development Fund

Publisher

Wiley

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stochastic simulation of exciton transport in semiconductor heterostructures;Russian Journal of Numerical Analysis and Mathematical Modelling;2024-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3