S100A7 as a potential diagnostic and prognostic biomarker of esophageal squamous cell carcinoma promotes M2 macrophage infiltration and angiogenesis

Author:

Lu Zhiliang1,Zheng Sufei1,Liu Chengming1,Wang Xinfeng1,Zhang Guochao1,Wang Feng1,Wang Sihui1,Huang Jianbing1,Mao Shuangshuang1,Lei Yuanyuan1,Wang ZhanYu1,Sun Nan1,He Jie1ORCID

Affiliation:

1. Department of Thoracic Surgery State Key Laboratory of Molecular Oncology/National Cancer Center/National Clinical Research for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China

Abstract

AbstractDysregulated expression of S100A7 is found in several cancers and plays an important role in tumor progression; however, its carcinogenic role in esophageal squamous carcinoma (ESCC) is still poorly understood. Here, we identified that the levels of S100A7 were remarkably upregulated in 341 tumor tissues (P < .001) and 274 serum samples (P < .001) of ESCC patients compared with normal control. It was an independent prognostic factor (P = .026). Furthermore, a new diagnostic model for ESCC based on serum S100A7, SCC, and crfra21‐1 was established with area under curve (AUC) up to 0.863 (95% CI: 0.802‐0.925). Mechanically, we found upregulated S100A7 could promote cell migration and proliferation through intracellular binding to JAB1 and paracrine interaction with RAGE receptors and then activates the downstream signaling pathways. In addition, exocrine S100A7 could promote M2 macrophage infiltration and polarization by up‐regulating M2 macrophage associated proteins, and tumor angiogenesis by enhancing the activation of p‐ErK and p‐FAK pathways. Further animal experiments confirmed the role of S100A7 in promoting M2 macrophage infiltration and angiogenesis in ESCC. In conclusion, these findings highlighted the potential diagnostic and prognostic value of S100A7 in patients with ESCC. Meanwhile, our results reveal that S100A7 promotes tumor progression by activating oncogenic pathways and remodeling tumor microenvironment, which paving the way for the progress of S100A7 as a therapeutic target for cancer treatment.

Funder

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3