Effects of Posture and Walking on Tibial Vascular Hemodynamics Before and After 14 Days of Head‐Down Bed Rest

Author:

Hedge Eric T12ORCID,Vico Laurence3ORCID,Hughson Richard L1ORCID,Mastrandrea Carmelo J1ORCID

Affiliation:

1. Schlegel‐UW Research Institute for Aging Waterloo Canada

2. Department of Kinesiology and Health Sciences University of Waterloo Waterloo Canada

3. U1059 INSERM—SAINBIOSE (Santé Ingéniérie Biologie St‐Etienne) Campus Santé Innovation Université Jean Monnet Saint‐Priest‐en‐Jarez France

Abstract

ABSTRACTHuman skeletal hemodynamics remain understudied. Neither assessments in weight‐bearing bones during walking nor following periods of immobility exist, despite knowledge of altered nutrient‐artery characteristics after short‐duration unloading in rodents. We studied 12 older adults (8 females, aged 59 ± 3 years) who participated in ambulatory near‐infrared spectroscopy (NIRS) assessments of tibial hemodynamics before (PRE) and after (POST) 14 days of head‐down bed rest (HDBR), with most performing daily resistance and aerobic exercise countermeasures during HDBR. Continual simultaneous NIRS recordings were acquired over the proximal anteromedial tibial prominence of the right lower leg and ipsilateral lateral head of the gastrocnemius muscle during supine rest, walking, and standing. During 10 minutes of walking, desaturation kinetics in the tibia were slower (time to 95% nadir values 125.4 ± 56.8 s versus 55.0 ± 30.1 s,p = 0.0014). Tibial tissue saturation index (TSI) immediately fell (−9.9 ± 4.55) and did not completely recover by the end of 10 minutes of walking (−7.4 ± 6.7%,p = 0.027). Upon standing, total hemoglobin (tHb) kinetics were faster in the tibia (p < 0.0001), whereas HDBR resulted in faster oxygenated hemoglogin (O2Hb) kinetics in both tissues (p = 0.039). After the walk‐to‐stand transition, changes in O2Hb (p = 0.0022) and tHb (p = 0.0047) were attenuated in the tibia alone after bed rest. Comparisons of NIRS‐derived variables during ambulation and changes in posture revealed potentially deleterious adaptations of feed vessels after HDBR. We identify important and novel tibial hemodynamics in humans during ambulation before and after bed rest, necessitating further investigation. © 2023 The Authors.JBMR Pluspublished by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

Funder

Canadian Institutes of Health Research

Natural Sciences and Engineering Research Council of Canada

Publisher

Oxford University Press (OUP)

Subject

Orthopedics and Sports Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3