Electrochemical alcohol oxidation reaction on Precious‐Metal‐Free catalysts: Mechanism, activity, and selectivity

Author:

Shi Jiawei1,Ma Jun1,Ma Enze1,Li Jing1,Hu Yang2,Fan Liyuan3,Cai Weiwei1

Affiliation:

1. Hydrogen Energy Technology Innovation Center of Hubei Province, Faculty of Materials Science and Chemistry China University of Geosciences Wuhan Hubei China

2. Department of Energy Conversion and Storage Technical University of Denmark Lyngby Denmark

3. College of Science and Engineering James Cook University Townsville Australia

Abstract

AbstractThe electrochemical alcohol oxidation reaction (AOR) is pivotal for the development of sustainable energy. The complete oxidation of alcohols has attracted extensive attention as a vital process in fuel cells. Moreover, as an alternative reaction to the oxygen evolution reaction, the selective oxidation of alcohols emerges as an effective means to lower the energy expenditure associated with electrolytic hydrogen production while yielding high‐value products. Nonprecious metal materials have been widely applied in the selective oxidation catalysis of alcohols due to their cost‐effectiveness and excellent durability. In recent years, leveraging the advantages of nonprecious metal materials in electrocatalytic AOR, researchers have delved into catalytic mechanisms and various efficient catalysts have been fabricated and evaluated. This review provides an overview of the current advancements in the electrocatalytic selective oxidation of diverse alcohols and the catalytic systems centered around nonprecious metal materials. It systematically summarizes the shared traits and distinctions in catalytic reaction characteristics across various systems, thereby laying the theoretical foundation for developing novel catalyst systems that are efficient, stable, and highly selective. This review will facilitate the utilization of nonprecious metal catalysts further toward the electrocatalytic oxidation of alcohols.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3