Long-term effects of the antibacterial agent triclosan on marine periphyton communities

Author:

Eriksson K. Martin1,Johansson C. Henrik2,Fihlman Viktor2,Grehn Alexander2,Sanli Kemal2,Andersson Mats X.2,Blanck Hans2,Arrhenius Åsa2,Sircar Triranta2,Backhaus Thomas2

Affiliation:

1. Department of Shipping and Marine TechnologyChalmers University of Technology Gothenburg Sweden

2. Department of Biological and Environmental SciencesUniversity of Gothenburg Gothenburg Sweden

Abstract

AbstractTriclosan is a widely used antibacterial agent that has become a ubiquitous contaminant in freshwater, estuary, and marine environments. Concerns about potential adverse effects of triclosan have been described in several recent risk assessments. Its effects on freshwater microbial communities have been well studied, but studies addressing effects on marine microbial communities are scarce. In the present study, the authors describe short- and long-term effects of triclosan on marine periphyton (microbial biofilm) communities. Short-term effects on photosynthesis were estimated after 60 min to 210 min of exposure. Long-term effects on photosynthesis, chlorophyll a fluorescence, pigment content, community tolerance, and bacterial carbon utilization were studied after exposing periphyton for 17 d in flow-through microcosms to 0.316 nM to 10 000 nM triclosan. Results from the short-term studies show that triclosan is toxic to periphyton photosynthesis. Half maximal effective concentration (EC50) values of 1080 nM and 3000 nM were estimated using 14CO2-incorporation and pulse amplitude modulation (PAM) fluorescence measurements, respectively. After long-term triclosan exposure in flow-through microcosms, photosynthesis estimated using PAM fluorometry was not inhibited by triclosan concentrations up to 1000 nM but instead increased with increasing triclosan concentration. Similarly, at exposure concentrations of 31.6 nM and higher, triclosan caused an increase in photosynthetic pigments. At 316 nM triclosan, the pigment amounts were increased by a factor of 1.4 to 1.9 compared with the control level. Pollution-induced community tolerance was observed for algae and cyanobacteria at 100 nM triclosan and higher. Despite the widespread use of triclosan as an antibacterial agent, the compound did not have any effects on bacterial carbon utilization after long-term exposure. Environ Toxicol Chem 2015;34:2067–2077. © 2015 SETAC

Funder

Svenska Forskningsrådet Formas

Publisher

Oxford University Press (OUP)

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3