The impacts of land‐use and climate change on the Zoige peatland carbon cycle: A review

Author:

Gaffney Paul P. J.1ORCID,Tang Qiuhong12ORCID,Li Quanwen3,Zhang Ruiyang4,Pan Junxiao4,Xu Ximeng1,Li Yuan5,Niu Shuli24

Affiliation:

1. Key Laboratory of Water Cycle and Related Land Surface Processes Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences Beijing China

2. University of Chinese Academy of Sciences Beijing China

3. State Key Laboratory of Resources and Environmental Information System Institute of Geographic Sciences and National Resources Research, Chinese Academy of Sciences Beijing China

4. Key Laboratory of Ecosystem Network Observation and Modelling Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences Beijing China

5. Environmental Development Center, Ministry of Ecology and Environment Beijing China

Abstract

AbstractThe Zoige peatlands are the largest peatland area in China, and the largest high‐altitude peatland in the world. As with many peatlands worldwide, degradation from land management and climate change mean that the intact Zoige peatland area has decreased, potentially reducing the carbon (C) sink function and ecosystem services. This review summarizes current knowledge of the impacts of land‐use and climate change on the Zoige peatland C cycle in a global perspective and identifies future research and management directions. The existing literature suggests that artificial drainage carried out to lower water tables and improve grazing has a significant impact on the peatland C cycle. Drained and degraded areas may act as a net C source, through increased CO2 emissions, although the overall C balance of the Zoige peatlands is likely still a net C sink. Future climate change may also impact upon the peatland C cycle. Warming of 2°C may significantly reduce the strength of the C sink of intact peatland areas, which may shift the overall Zoige peatland C cycle balance to a net C source. The effect of warming on degraded Zoige peatlands is a major uncertainty, although the global literature suggests warming effects may be greater in degraded peatlands. Restoration of degraded peatlands (by blocking drains) may help reverse some of the impacts of degradation and gradually recover C sink function. However, there are fewer studies in Zoige peatlands than elsewhere. We conclude with several specific suggestions for future research on the peatland C cycle.This article is categorized under: Paleoclimates and Current Trends > Modern Climate Change Assessing Impacts of Climate Change > Observed Impacts of Climate Change Climate, Ecology, and Conservation > Observed Ecological Changes

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Atmospheric Science,Geography, Planning and Development,Global and Planetary Change

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3