Novel Guidelines of Redox Mediators for Practical Lithium–Oxygen Batteries: Characterization Mechanisms, Design Principle, and Engineering Strategies

Author:

Li Tianci1,Liu Dongsheng1,Gao Lu1,Yu Dan1,Liu Xia1,Li Lei1,Kang Weimin1ORCID

Affiliation:

1. State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering Tiangong University Tianjin 300387 PR China

Abstract

AbstractIn recent years, aprotic lithium–oxygen (Li–O2) batteries have received extensive academic attention for their ultrahigh capacity. However, their practical development faces the problems of low capacity, low rate, and short lifetime. Soluble catalysis with efficient redox mediators (RMs) is considered a feasible strategy owing to its good interfacial contact and flexible action. However, the mutual constraints of RMs charging/discharging catalysis, the erosion of anode by RMs shuttle effect leading to deactivation, and the decomposition of RMs or the initiation of side reactions have greatly limited the effectiveness of RMs in Li–O2 batteries. Therefore, it is necessary to optimize RMs and find traceable principles and directions. Based on this, this work systematically reviews the mechanism, effectiveness, and characterization of RMs in Li–O2 batteries. The design principles of novel RMs constructed by two research tendencies of kinetics and thermodynamics are pioneered, and the key roles of ionization energy and site‐resistive groups are especially pointed out. In addition, the current optimization design strategies for RMs are summarized. Specifically, the introduction of functional groups such as adsorption, conductivity, active sites, and the use of intermolecular forces for efficient RMs are highlighted, designed to provide direction for optimization and development of RMs.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3