Additive‐Free Oxidized Spiro‐MeOTAD Hole Transport Layer Significantly Improves Thermal Solar Cell Stability

Author:

Grotevent Matthias J.1ORCID,Lu Yongli1,Šverko Tara1,Shih Meng‐Chen1,Tan Shaun1,Zhu Hua1,Dang Tong2,Mwaura Jeremiah K.3,Swartwout Richard24,Beiglböck Finn15,Kothe Linda16,Bulović Vladimir2,Bawendi Moungi G.1ORCID

Affiliation:

1. Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA

2. Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA

3. Research Laboratory of Electronics Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA

4. Active Surfaces 444 Somerville Ave Somerville MA 02143 USA

5. ETH Zurich Zürich 8092 Switzerland

6. Paderborn University 33098 Paderborn Germany

Abstract

AbstractPerovskite solar cells are among the most promising new solar technologies, already surpassing polycrystalline silicon solar cell efficiencies. The stability of the highest efficiency devices at elevated temperature is, however, poor. These cells typically use Spiro‐MeOTAD as the hole transporting layer. It is generally believed that additives, required for enhancing electrical conductivity and optimizing energy level alignment, are responsible for the reduced stability—inferring that Spiro‐MeOTAD based hole transporting layers are intrinsically unstable. Here, a reliable noble metal free synthesis of Spiro‐MeOTAD (bis(trifluoromethane)sulfonimide)4 is presented which is used as the oxidizing agent. No additives are added to the partially oxidized Spiro‐MeOTAD hole‐transporting layer. Device efficiencies up to 24.2% are achieved. Electrical conductivity is largely developed by the first 1% oxidation. Further oxidation shifts the energy levels away from the vacuum level, which allows tuning of the energy level alignment without the use of additives—contradicting the current understanding of this system. Without additives, devices demonstrate significant improvement in stability at elevated temperatures up to 85 °C under one sun over 1400 h continuous illumination. The remaining degradation is pinpointed to ion migration and reactions in the perovskite layer which may be further suppressed with compositional engineering and adequate ion barrier layers.

Funder

U.S. Department of Energy

Solar Energy Technologies Office

Basic Energy Sciences

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3