Nanofibrous Covalent Organic Frameworks Based Hierarchical Porous Separators for Fast‐Charging and Thermally Stable Lithium Metal Batteries

Author:

Wang Kexiang1,Duan Ju1,Chen Xin2,Wang Jianan2,Li Jiaqiang1,Jiang Lexin1,Yan Wei2,Lyu Wei1,Liao Yaozu1

Affiliation:

1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China

2. Department of Environmental Science and Engineering State Key Laboratory of Multiphase Flow in Power Engineering School of Energy and Power Engineering Xi'an Jiaotong University Xi'an 710000 China

Abstract

AbstractEngineering multifunctional smart separators are important for the ongoing pursuit of fast‐charging and safe batteries. Herein, a novel nanofibrous covalent organic framework (COF) based separator with well‐designed hierarchical porous channels is fabricated to effectively regulate mass transport for fast‐charging and thermally stable lithium metal batteries (LMBs). Such a hierarchical porous separator consists of electrospun polyacrylonitrile nanofibers with macroporous channels (average diameter of 323 nm) and mesoporous channels (≈7 nm) created between amide‐group‐bonded COF nanoparticles with intrinsic 1.6 nm lithiophilic microporous channels (PAN/AM‐COF). Computational fluid dynamics and density functional theory calculations demonstrate that PAN/AM‐COF can simultaneously facilitate high‐speed and selective transport of Li+, as well as homogeneous deposition of Li, achieving high conductivity (3.33 mS cm−1) and high Li+ transference number (0.79). As a result, Li || LFP full cell with PAN/AM‐COF displays superior cycling stability at 10 C with an acceptable capacity attenuation (0.037% per cycle) over 1000 cycles. Moreover, when operating under an extreme temperature of 100 °C, the Li || LFP full cell with PAN/AM‐COF can still operate stably for 300 cycles at 30 C, highlighting its potential processing scalability for ultrafast‐charging energy storage systems. This study gives insights into designing functional separators for fast‐charging LMBs.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Program of Shanghai Academic Research Leader

Natural Science Foundation of Shanghai Municipality

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3