Atomically‐Scattered Active Centers Accelerating Photocatalytic Evolution of Ammonia

Author:

Ran Jingrun1,Talebian‐Kiakalaieh Amin1,Qiao Shi‐Zhang1ORCID

Affiliation:

1. School of Chemical Engineering University of Adelaide Adelaide SA 5005 Australia

Abstract

AbstractPhotocatalytic N2 reduction to ammonia rises as a cost‐effective, environmentally benign, and efficient route to generate ammonia as a transportable/storable energy carrier and essential fertilizer. Recently, photocatalysts anchored with various atomically scattered active centers (ASACs), such as Ru, Fe, Au, Pt, Cu, Mo, and La, are extensively explored in photocatalytic N2‐to‐ammonia transformation. This review critically summarizes the current achievements in the synthesis of various photocatalyst supports (such as metal oxide, carbon nitride, metal‐organic framework, and covalent organic framework) anchored with the above‐mentioned ASACs for N2 reduction to form ammonia. The synthesis routes, structural/compositional characteristics, and performances of these ASACs anchored photocatalysts are summarized and introduced. Furthermore, the atomic‐scale relationship between the structure/composition and performance of these ASACs anchored photocatalysts is also introduced. The reaction mechanism including the reaction kinetics/thermodynamics, reaction pathways, and charge carrier kinetics, especially those revealed by various state‐of‐art characterization techniques, have been highlighted. This review also outlines the basic principles for the synthesis of novel photocatalysts aimed at ammonia evolution. Finally, the current challenges, opportunities, and future outlooks of ASACs anchored photocatalysts for ammonia evolution are introduced.

Funder

Australian Research Council

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent advances in carbon quantum dot photocatalysis;Research on Chemical Intermediates;2024-08-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3