Affiliation:
1. Key Laboratory for Magnetism and Magnetic Materials of MOE Key Laboratory of Special Function Materials and Structure Design of MOE Lanzhou University Lanzhou 730000 P. R. China
2. Laboratory of Advanced Materials Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials School of Chemistry and Materials Fudan University Shanghai 200433 P. R. China
3. Key Laboratory of Engineering Dielectric and Applications (Ministry of Education) School of Electrical and Electronic Engineering Harbin University of Science and Technology Harbin Heilongjiang 150080 P. R. China
Abstract
AbstractRechargeable Zn‐air batteries (ZAB) represent a promising avenue for sustainable energy storage, boasting high energy density, cost‐effectiveness, scalability, and environmental friendliness. However, the sluggish redox kinetics and limited cycle life of bifunctional oxygen evolution/reduction (OER/ORR) electrocatalysts impede the further practical development of ZABs. In this study, homogenic boundary effect within α/β‐NiMoO4 is introduced as a superior electrocatalyst for ZAB. Through in situ poikilothermic X‐ray diffraction, X‐ray absorption spectroscopy, and theoretical investigations, the active Ni atoms exhibit more effective electron transfer at α/β‐NiMoO4 due to the homogenic boundary effect is unveiled. Furthermore, the presence of oxygen vacancies and lattice distortions at these boundaries significantly reduces the thermodynamic barrier of OER to a mere 0.46 V. Consequently, α/β‐NiMoO4 demonstrates a remarkably low overpotential of 270 mV at 10 mA cm−2 for the bottlenecked OER, along with prolonged durability (150 h) and a high specific capacity (745 mAh g−1 at 5 mA cm−2) for ZAB. This study underscores the efficacy of homogenic boundary effects in enhancing electrocatalytic activities, offering great promise for the advancement of sustainable energy systems.
Funder
Natural Science Foundation of Gansu Province
National Natural Science Foundation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献