Dark‐Bright Exciton Splitting Dominates Low‐Temperature Diffusion in Halide Perovskite Nanocrystal Assemblies

Author:

Bornschlegl Andreas J.1ORCID,Lichtenegger Michael F.1ORCID,Luber Leo1,Lampe Carola1,Bodnarchuk Maryna I.23,Kovalenko Maksym V.23,Urban Alexander S.1ORCID

Affiliation:

1. Nanospectroscopy Group and Center for Nanoscience (CeNS) Nano‐Institute Munich Department of Physics Ludwig‐Maximilians‐Universität 80539 Munich Germany

2. Laboratory for Thin Films and Photovoltaics Empa−Swiss Federal Laboratories for Materials Science and Technology Dübendorf 8600 Switzerland

3. Department of Chemistry and Applied Biosciences Institute of Inorganic Chemistry ETH Zürich Zürich 8093 Switzerland

Abstract

AbstractSemiconductor nanocrystals can replace conventional bulk materials completely in displays and light‐emitting diodes. Exciton transport dominates over charge carrier transport for materials with high exciton binding energies and long ligands, such as halide perovskite nanocrystal films. Here, how beneficial superlattices – nearly perfect 3D assemblies of nanocrystals ‐ are to exciton transport is investigated. Surprisingly, the high degree of order is not as crucial as the individual nanocrystal size, which strongly influences the splitting of the excitonic manifold into bright and dark states. At very low temperatures, the energetic splitting is larger for the smallest nanocrystals, and dark levels with low oscillator strength effectively trap excitons inside individual nanocrystals, suppressing diffusion. The effect is reversed at elevated temperatures, and the larger nanocrystal size becomes detrimental to exciton transport due to enhanced exciton trapping and dissociation. The results reveal that the nanocrystal size must be strongly accounted for in design strategies of future optoelectronic applications.

Funder

HORIZON EUROPE European Research Council

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Air Force Office of Scientific Research

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3