Ternary Metal Sulfides as Electrode Materials for Na/K‐Ion Batteries and Electrochemical Supercapacitor: Advances/Challenges and Prospects

Author:

Pramanik Atin1ORCID,Sengupta Shilpi2,Saju Sreehari K.1,Chattopadhyay Shreyasi1,Kundu Manab3ORCID,Ajayan Pulickel M.1ORCID

Affiliation:

1. Department of Material Science and NanoEngineering Rice University Houston Texas 77005 USA

2. Electrochemical Energy Storage Laboratory Department of Chemistry SRM Institute of Science and Technology Tamil Nadu 603203 India

3. Nanomaterials for Energy Storage and Conversion INL International Iberian Nanotechnology Laboratory Av. Mestre José Veiga s/n Braga 4715‐330 Portugal

Abstract

AbstractTernary metal sulfides (TMSs) have garnered significant attention as alternative electrode materials for rechargeable metal‐ion battery anodes and electrodes for electrochemical supercapacitors (SCs). With the escalating costs of lithium, research has shifted toward alternative sources like sodium‐ion batteries (NIBs) and potassium‐ion batteries (KIBs), offering cost‐effectiveness and greater natural abundance globally. However, pursuing suitable electrode materials beyond lithium‐ion batteries (LIBs), such as NIBs, KIBs, and SCs with enhanced energy and power density, remains a formidable challenge. In this context, TMSs demonstrate remarkable reversibility as NIB, KIB, and SC electrode materials, showcasing multi‐electron redox reactions, improved electronic conductivity, and higher theoretical capacities. Numerous research articles have highlighted the promising future of TMSs as electrodes for electrochemical energy conversion and storage (EECS). Nonetheless, practical applications are hindered by limitations, including structural stability during long‐standing cyclability, electronic conductivity, and scalability. This review systematically demonstrates how varying synthesis routes can tailor nanostructures and their influence on electrochemical activity. Additionally, an in‐depth literature survey is provided on the electrochemical performances of TMSs in NIBs, KIBs, and SCs and summarize recent advancements with the best available literature. Moreover, promising prospects and challenges are highlighted, expressing optimism that TMSs will emerge as pivotal electrodes for EECS.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3