Electrochemo‐Mechanical Effects on Structural Integrity of Ni‐Rich Cathodes with Different Microstructures in All Solid‐State Batteries

Author:

Liu Xiangsi1ORCID,Zheng Bizhu12ORCID,Zhao Jun3,Zhao Weimin4,Liang Ziteng1,Su Yu1,Xie Chenpeng1,Zhou Ke1,Xiang Yuxuan1,Zhu Jianping1,Wang Hongchun5,Zhong Guiming6,Gong Zhengliang5ORCID,Huang Jianyu3,Yang Yong15ORCID

Affiliation:

1. State Key Laboratory for Physical Chemistry of Solid Surface Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China

2. Ningde Amperex Technology Ltd Ningde 352100 China

3. Clean Nano Energy Center State Key Laboratory of Metastable Materials Science and Technology Yanshan University Qinhuangdao 066004 China

4. College of Chemical Engineering and Safety Binzhou University Binzhou 256503 China

5. School of Energy Xiamen University Xiamen 361102 China

6. Xiamen Institute of Rare Earth Materials Haixi institutes Chinese Academy of Sciences Xiamen 361024 China

Abstract

AbstractThe electrochemo‐mechanical effects on the structural integrity of electrode materials during cycling is a non‐negligible factor that affects the cyclability and rate performance of all solid‐state batteries (ASSBs). Herein, combined with in situ electrochemical impedance spectroscopy (EIS), focused ion beam (FIB)–scanning electron microscope (SEM), and solid state nuclear magnetic resonance (ssNMR) techniques, the electrochemical performance and electrochemo‐mechanical behavior are compared of conventional polycrystalline NCM811 (LiNi0.8Co0.1Mn0.1O2), small‐size polycrystalline NCM811 and single‐crystal (S‐) NCM811 in Li10SnP2S12 based ASSBs during long charge–discharge cycles. The results show that the deteriorating performance of both large and small polycrystalline NCM811 originates from their inherent structural instability at >4.15 V, induced by the visible voids between the randomly oriented grains and microcracks due to the electrode pressing process and severe anisotropic volume change during cycling, rather than lithium ion transport in the primary particle. In contrast, S‐NCM811 with good microstructural integrity show remarkably high capacity (187 mAh g−1, 18 mA g−1), stable cyclability (100 cycles, retention of 64.5%), and exceptional rate capability (102 mAh g−1 at 180 mA g−1) in ASSBs even without surface modification. Moreover, 1 wt% LiNbO3@S‐NCM811 further demonstrates excellent initial discharge capacity and capacity retention. This work highlights the critical role of electrochemo‐mechanical integrity and offers an promising path towards mechanically‐reliable cathode materials for ASSBs.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3