Multifunctional Silicon‐Based Composite Electrolyte Additive Enhances the Stability of the Lithium Metal Anode/Electrolyte Interface

Author:

Wang Sunfa1,He Yitao2,Zhang Ge1,Ma Kanghou1,Wang Chen1,Zhou Fangshuo1,Wang Zhihong1,Liu Zhiguo1,Lü Zhe1,Huang Xiqiang1,Zhang Yaohui1ORCID

Affiliation:

1. School of Physics Harbin Institute of Technology Harbin 150001 China

2. Department of New Energy Science and Engineering School of Energy and Environment Anhui University of Technology Ma'anshan 243000 China

Abstract

AbstractThe high energy density of lithium metal batteries (LMBs) makes them a promising battery research target. However, the solid electrolyte interphase (SEI) instability causes dendrite formation/growth and short circuits. Electrolyte engineering can regulate the intrinsic properties of the SEI due to the composition and properties of the SEI strongly depend on the electrolyte component. In this work, 2,4,6,8‐tetramethyl‐2,4,6,8‐tetravinylcyclotetra‐siloxane (V4) is paired with vinyl‐triethoxy‐silane (VTEO) to obtain a novel ester‐based electrolyte additive. Decomposition of V4 molecules into silicon‐based polymer‐rich SEI on the Li metal anode surface has been predicted theoretically and verified experimentally. Through ─CH═CH2 addition polymerization on the preformed silicon‐based polymer layers which originates from the decomposition of V4, VTEO molecules can be integrated into SEI films due to their “molecular bridge” structure. The organic functional group (─OCH2CH3) on VTEO molecules promotes Li+ transport kinetics and forms Si─O─Li bonds under the presence of OH, improving anode interface stability. The experimental results show that the cycle life of the LFP‐Li full batteries is over 1000 and 500 cycles at 5 C and 10 C, respectively. This research elucidates a reliable strategy for constructing SEI film with high adhesion and long‐term viability on the Li metal anode.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3