Affiliation:
1. Department of Energy Science and Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
2. Materials and Components Research Division Electronics and Telecommunications Research Institute (ETRI) 218 Gajeongno Yuseong‐gu Daejeon 34129 Republic of Korea
3. Iljin Materials Seoul 04167 Republic of Korea
4. Energy Science and Engineering Research Center Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
Abstract
AbstractThe graphite/silicon‐based diffusion‐dependent electrodes (DDEs) are one of the promising electrode designs to realize high energy density for all‐solid‐state batteries (ASSBs) beyond conventional composite electrode design. However, the graphite/silicon‐based electrode also suffers from large initial irreversible capacity loss and capacity fade caused by significant volume change during cycling, which offsets the advantages of the DDEs in ful‐cell configuration. Herein, a new concept is presented for DDEs, dry pre‐lithiated DDEs (PL‐DDEs) by introducing Li metal powder. Since Li metal powder provides Li ions to graphite and silicon even in a dry state, the lithiation states of active materials is increased. Moreover, the residual Li within PL‐DDE further serves as an activator and a reservoir for promoting the lithiation reaction of the active materials and compensating for the active Li loss upon cycling, respectively. Based on these merits, ASSBs with PL‐DDE exhibit excellent cycling performance with higher columbic efficiency (85.2% retention with 99.6% CE at the 200th cycle) compared to bare DDE. Therefore, this dry lithiation process must be a simple but effective design concept for DDEs for high‐energy‐density ASSBs.
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献