Semitransparent Organic Solar Cells with Efficiency Surpassing 15%

Author:

Jing Jianhua1,Dong Sheng1,Zhang Kai1ORCID,Zhou Zhisheng1,Xue Qifan1,Song Yu1,Du Zurong1,Ren Minrun1,Huang Fei1

Affiliation:

1. Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China

Abstract

AbstractSemitransparent organic solar cells (ST‐OSCs) have promising prospects for building or vehicle integrated solar energy harvesting with energy generation and see‐through function. How to achieve both an adequate average visible transmittance (AVT) and high‐power conversion efficiency (PCE) is always the key issue. Herein, a simple but effective strategy for constructing high performance ST‐OSCs by introducing a small molecule [2‐(9‐H‐Carbazol‐9‐yl) ethyl] phosphonic acid (2PACz) into a low‐donor content active layer is reported. The fill factor is improved from 70.5% to 75.5% and correlated to the mitigated charge recombination and strengthened charge extraction, further ascribed to the enhanced build‐in potential, reduced charge transport resistance, and favorable film morphology. By combining the unique nature of 2PACz, that can spontaneously form in situ self‐organized hole transport interlayers under bulk‐heterojunction films, PEDOT‐free ST‐OSCs with a PCE of 15.2%, amongst the highest values in this field, is achieved with an AVT of 19.2%. Moreover, an outstanding light utilization efficiency of 3.39% is also obtained with an AVT of 30.0% and a PCE of 11.3% in a translucent device by tuning the electrode. The work demonstrates a new and simple strategy for achieving excellent AVT and PCE in ST‐OSCs with simplified device structure.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3