A Hydridoaluminate Additive Producing a Protective Coating on Ni‐Rich Cathode Materials in Lithium‐Ion Batteries

Author:

Forero‐Saboya Juan12ORCID,Moiseev Ivan A.3,Vlara Marina‐Lamprini124,Foix Dominique25,Deschamps Michael26,Abakumov Artem M.3,Tarascon Jean‐Marie124,Mariyappan Sathiya12ORCID

Affiliation:

1. Chimie du Solide et de l'Energie UMR 8260 Collège de France CEDEX 05 Paris 75231 France

2. Réseau sur le Stockage Electrochimique de l'Energie (RS2E) CNRS FR 3459 Cedex 1 Amiens 80039 France

3. Center for Energy Science and Technology Skolkovo Institute of Science and Technology Bolshoy Boulevard 30, bld. 1 Moscow 121205 Russia

4. Sorbonne Université 4 place Jussieu Paris 75005 France

5. Université de Pau et Pays de l'Adour CNRS E2S UPPA IPREM UMR 5254, Cedex 9 Pau 64053 France

6. CNRS CEMHTI UPR3079 Université d'Orléans 1D avenue de la recherche scientifique, Cedex 2 Orléans 45071 France

Abstract

AbstractTo enhance the energy density of Li‐ion batteries, high‐capacity and high‐voltage cathode materials are needed. Recently, Ni‐rich layered oxides have attracted attention as they can offer ≈200 mAh g−1 when cycled up to 4.3 V. However, cycling these materials in their full capacity range often leads to excessive reactivity with the electrolyte, resulting in particle cracking, transition metal dissolution, and oxygen loss. In this study, the use of lithium hydridoaluminates as electrolyte additives is explored for lithium‐ion batteries based on nickel‐rich cathode materials. Being mild reducing agents, these additives act as HF scavengers, avoiding transition metal dissolution from the cathode. Additionally, their oxidation results in the formation of an Al‐rich protective layer on the cathode, which dampens the surface reactivity, preventing surface reconstruction and impedance build‐up. This study further stresses the important role of the cathode‐electrolyte interface phenomena on the capacity degradation of Ni‐rich cathode materials and provides a novel avenue for controlling this reactivity, thus extending their cycling life.

Funder

Russian Science Foundation

Agence Nationale de la Recherche

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3