Cooperative Effect of Redox Mediator and Ion Selective Membrane to Inhibit the Shuttle Effect for Li–O2 Battery with Large Cyclic Capacity

Author:

Zhou Danzheng1,Zhang Jian1,Bian Tengfei1,Tao Yuanfang1,Liu Xiao2,Han Qing1,Liu Zewen1,Chen Silei1,Wang Jin3,Zhang Peng4,Zhao Yong1ORCID

Affiliation:

1. Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High‐efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China

2. College of Chemistry and Chemical Engineering Henan Key Laboratory of Function‐Oriented Porous Materials Luoyang Normal University Luoyang 471934 P. R. China

3. State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China

4. Department of Chemistry College of Science Northeastern University Shenyang Liaoning 110819 P. R. China

Abstract

AbstractAprotic lithium‐oxygen (Li–O2) batteries hardly cycle at the condition of high area capacity for realizing their high energy density, because the unconducive lithium peroxide (Li2O2) discharge product limits the electron transfer between electrode and O2/Li2O2. Here, it is demonstrated that one of redox mediator (RM), triethylene glycol bis‐2,2,6,6‐tetramethylpiperidin‐1‐oxyl radical (D‐TEMPO), can be effectively used to promote the electron transfer between electrode and Li2O2, which the shuttle effect of RM can be cooperatively inhibited by regulating the size of RM and the thickness of ion‐selective membrane. As a result, the Li–O2 battery coupled with double cathodes, D‐TEMPO, and ion‐selective membrane can be stably operated for 46 days at a capacity of 5 mAh cm−2. The concept in this work provides the cooperative design of a stable solution‐mediated pathway for high‐capacity Li–O2 battery with long cycle stability.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3