Affiliation:
1. Graduate School of Advanced Science and Technology Japan Advanced Institute of Science and Technology 1‐1 Asahidai Nomi Ishikawa 923–1292 Japan
Abstract
AbstractThe binder's choice holds immense significance in the quest for robust electrochemical performances of lithium/sodium‐ion battery's (LIB/SIB) electrodes. Conventional PVDF binder is a passive polymer lacking the ability to transport Li+/Na+ and facilitate ion kinetics. This limitation poses constraints in achieving high specific capacity, fast charging, and long cycle life. Herein, a novel water‐soluble concentrated imidazolium functionalized poly(ionic liquid), poly(oxycarbonylmethylene 1‐allyl‐3‐methyimidazolium) (PMAI) is synthesized, and evaluated it as binder in LIB/SIB. PMAI‐based anodic‐half cell exhibits excellent electrochemical performance, achieving higher capacities (297 mAhg−1 at 1C for LIBs and 250 mAhg−1 at 60 mAg−1 for SIBs) and good cycle stability (80 % capacity retention after 750 cycles for LIBs; 96% capacity retention after 200 cycles for SIBs), compared to PVDF binder. In addition, PMAI/Gr delivers a higher discharge capacity of 85 mAhg−1 than PVDF/Gr with 47 mAhg−1 at 5C. PMAI‐containing electrodes show better rate capability at different current densities than PVDF binder in LIB/SIB. The enhanced ion diffusion coefficient, lower resistance and decreased activation energy of desolvation, are ascribed to densely polar ionic liquid groups along the polymer and formation of a functionalized SEI via binder reduction. The novel PMAI binder's design and full‐cell examination confirm its potential in secondary‐ion battery applications.
Funder
Ministry of Education, Culture, Sports, Science and Technology