Densely Imidazolium Functionalized Water Soluble Poly(Ionic Liquid) Binder for Enhanced Performance of Carbon Anode in Lithium/Sodium‐Ion Batteries

Author:

Patra Amarshi1,Matsumi Noriyoshi1ORCID

Affiliation:

1. Graduate School of Advanced Science and Technology Japan Advanced Institute of Science and Technology 1‐1 Asahidai Nomi Ishikawa 923–1292 Japan

Abstract

AbstractThe binder's choice holds immense significance in the quest for robust electrochemical performances of lithium/sodium‐ion battery's (LIB/SIB) electrodes. Conventional PVDF binder is a passive polymer lacking the ability to transport Li+/Na+ and facilitate ion kinetics. This limitation poses constraints in achieving high specific capacity, fast charging, and long cycle life. Herein, a novel water‐soluble concentrated imidazolium functionalized poly(ionic liquid), poly(oxycarbonylmethylene 1‐allyl‐3‐methyimidazolium) (PMAI) is synthesized, and evaluated it as binder in LIB/SIB. PMAI‐based anodic‐half cell exhibits excellent electrochemical performance, achieving higher capacities (297 mAhg−1 at 1C for LIBs and 250 mAhg−1 at 60 mAg−1 for SIBs) and good cycle stability (80 % capacity retention after 750 cycles for LIBs; 96% capacity retention after 200 cycles for SIBs), compared to PVDF binder. In addition, PMAI/Gr delivers a higher discharge capacity of 85 mAhg−1 than PVDF/Gr with 47 mAhg−1 at 5C. PMAI‐containing electrodes show better rate capability at different current densities than PVDF binder in LIB/SIB. The enhanced ion diffusion coefficient, lower resistance and decreased activation energy of desolvation, are ascribed to densely polar ionic liquid groups along the polymer and formation of a functionalized SEI via binder reduction. The novel PMAI binder's design and full‐cell examination confirm its potential in secondary‐ion battery applications.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3