Fabrication and characterization of human finger ridge‐inspired soft elastomeric pressure sensor with liquid metal‐embedded microchannels

Author:

Saxena Akshay1ORCID,Patra Karali1ORCID

Affiliation:

1. Department of Mechanical Engineering Indian Institute of Technology Patna Patna India

Abstract

AbstractSoft sensors are flexible and stretchable, and because of this, they can be used on a wide range of surfaces, regardless of their size or shape. Such sensors may have applications such as in human–robot interaction, healthcare, soft robotics and human motion detection, where they can sense their surroundings and provide information. In this work, a soft piezoresistive sensor inspired by human finger ridges has been fabricated with liquid metal (EGaIn) electrode‐filled embedded microchannels on elastomeric material (Ecoflex 0030) and characterized for a pressure range of 0 to 280 kPa at different compression rates. The sensitivity of the elastomeric sensor increases and the limit of detection (LOD) decreases with a reduction in compression rate. In this work, microchannels on soft and stretchable elastomers are cast on a metallic mold prepared using the micromilling method. This method reduces the complexity of developing microchannels on the soft material using the metallic mold. The sensor has microchannels with a cross‐section of 200 μm × 200 μm, an active sensing area of 10 × 10 mm2 and overall dimensions of 15 × 15 × 2 mm3. At a low compression rate, this sensor exhibits a maximum sensitivity of 0.126 kPa−1 and a high linearity of 0.98, a LOD of 68 Pa, a response time of 30 ms and stability for 10 000 consecutive cycles at 100 kPa load. The developed sensor was shown to successfully differentiate various objects (soft to hard) based on the feedback it received when it was deployed on the gripper of an industrial manipulator. © 2024 The Author(s). Polymer International published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3