An automated search‐based test model generation approach for structural testing of model transformations

Author:

Jilani Atif Aftab1ORCID,Khan Muhammad Uzair1,Iqbal Muhammad Zohaib1,Usman Muhammad1ORCID

Affiliation:

1. Software Quality Engineering and Testing (QUEST) Laboratory National University of Computer and Emerging Sciences Islamabad Pakistan

Abstract

AbstractModel transformation testing has become crucial as model‐driven engineering has raised the abstraction level for developing software systems. Transformation is written to transform models from one level of abstraction to another, for example, model to model or model to code. A major challenge in testing the transformation is the creation of test models, such that (i) they conform to the source meta‐model (i.e., multiplicities and Object Constraint Language [OCL] constraints on meta‐model) and (ii) they provide coverage of the complete transformation (solving branch conditions for traversing all paths). Manual creation of test models requires a lot of time and effort. Still, the validity of the developed test models cannot be ensured. This paper aims to solve the above challenges using an automated search‐based strategy. The proposed approach is two‐stepped. First, valid test models are generated by solving source meta‐model constraints. Second, the generated models are evolved for achieving the structural coverage of the transformation by solving the branch conditions. A toolset model transformation testing environment (MOTTER) is developed to automate the search‐based solution. The proposed work is empirically evaluated on two case studies using four search algorithms. The result reflects that it successfully generates valid test models for achieving desired structural coverage with high performance on both the case studies.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Component-Based Test Case Generation and Prioritization Using an Improved Genetic Algorithm;International Journal of Cooperative Information Systems;2023-08-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3