Genetic inhibition of glutamate allosteric potentiation of GABAARs in mice results in hyperexcitability, leading to neurobehavioral abnormalities

Author:

Du Yehong1,Li Junjie1,Wang Maoju1,Tian Qiuyun1,Pang Yayan1,Wen Ya2,Wu Dongchuan3,Wang Yu Tian2,Dong Zhifang14ORCID

Affiliation:

1. Growth, Development, and Mental Health of Children and Adolescence Center Pediatric Research Institute Ministry of Education Key Laboratory of Child Development and Disorders National Clinical Research Center for Child Health and Disorders China International Science and Technology Cooperation Base of Child Development and Critical Disorders Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders Children's Hospital of Chongqing Medical...

2. Brain Research Centre and Department of Medicine Vancouver Coastal Health Research Institute University of British Columbia Vancouver British Columbia Canada

3. Translational Medicine Research Center China Medical University Hospital Graduate Institutes of Biomedical Sciences Taichung China

4. Institute for Brain Science and Disease of Chongqing Medical University Chongqing China

Abstract

AbstractThe imbalance between neuronal excitation and inhibition (E/I) in neural circuit has been considered to be at the root of numerous brain disorders. We recently reported a novel feedback crosstalk between the excitatory neurotransmitter glutamate and inhibitory γ‐aminobutyric acid type A receptor (GABAAR)‐glutamate allosteric potentiation of GABAAR functions through a direct binding of glutamate to the GABAAR itself. Here, we investigated the physiological significance and pathological implications of this cross‐talk by generating the β3E182G knock‐in (KI) mice. We found that β3E182G KI, while had little effect on basal GABAAR‐mediated synaptic transmission, significantly reduced glutamate potentiation of GABAAR‐mediated responses. These KI mice displayed lower thresholds for noxious stimuli, higher susceptibility to seizures and enhanced hippocampus‐related learning and memory. Additionally, the KI mice exhibited impaired social interactions and decreased anxiety‐like behaviors. Importantly, hippocampal overexpression of wild‐type β3‐containing GABAARs was sufficient to rescue the deficits of glutamate potentiation of GABAAR‐mediated responses, hippocampus‐related behavioral abnormalities of increased epileptic susceptibility, and impaired social interactions. Our data indicate that the novel crosstalk among excitatory glutamate and inhibitory GABAAR functions as a homeostatic mechanism in fine‐tuning neuronal E/I balance, thereby playing an essential role in ensuring normal brain functioning.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing

Publisher

Wiley

Subject

Cell Biology,Biochemistry (medical),Genetics (clinical),Computer Science Applications,Drug Discovery,Genetics,Oncology,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3