Mesenchymal stromal cells ameliorate diabetes‐induced muscle atrophy through exosomes by enhancing AMPK/ULK1‐mediated autophagy

Author:

Song Jia1,Liu Jidong1,Cui Chen1,Hu Huiqing1,Zang Nan1,Yang Mengmeng1,Yang Jingwen1,Zou Ying1,Li Jinquan1,Wang Lingshu1,He Qin1,Guo Xinghong1,Zhao Ruxing1,Yan Fei1,Liu Fuqiang1,Hou Xinguo1234,Sun Zheng1,Chen Li1234

Affiliation:

1. Department of Endocrinology Qilu Hospital of Shandong University Jinan Shandong China

2. Institute of Endocrine and Metabolic Diseases of Shandong University Jinan Shandong China

3. Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health Jinan Shandong China

4. Jinan Clinical Research Center for Endocrine and Metabolic Disease Jinan Shandong China

Abstract

AbstractBackgroundDiabetes and obesity are associated with muscle atrophy that reduces life quality and lacks effective treatment. Mesenchymal stromal cell (MSC)‐based therapy can ameliorate high fat‐diet (HFD) and immobilization (IM)‐induced muscle atrophy in mice. However, the effect of MSCs on muscle atrophy in type 2 diabetes mellitus (T2DM) and the potential mechanism is unclear. Here, we evaluated the efficacy and explored molecular mechanisms of human umbilical cord MSCs (hucMSCs) and hucMSC‐derived exosomes (MSC‐EXO) on diabetes‐ and obesity‐induced muscle atrophy.MethodsDiabetic db/db mice, mice fed with high‐fat diet (HFD), mice with hindlimb immobilization (IM), and C2C12 myotubes were used to explore the effect of hucMSCs or MSC‐EXO in alleviating muscle atrophy. Grip strength test and treadmill running were used to measure skeletal muscle strength and performance. Body composition, muscle weight, and muscle fibre cross‐sectional area (CSA) was used to evaluate muscle mass. RNA‐seq analysis of tibialis anterior (TA) muscle and Western blot analysis of muscle atrophy signalling, including MuRF1 and Atrogin 1, were performed to investigate the underlying mechanisms.ResultshucMSCs increased grip strength (P = 0.0256 in db/db mice, P = 0.012 in HFD mice, P = 0.0097 in IM mice), running endurance (P = 0.0154 in HFD mice, P = 0.0006 in IM mice), and muscle mass (P = 0.0004 in db/db mice, P = 0.0076 in HFD mice, P = 0.0144 in IM mice) in all models tested, with elevated CSA of muscle fibres (P < 0.0001 in db/db mice and HFD mice, P = 0.0088 in IM mice) and reduced Atrogin1 (P = 0.0459 in db/db mice, P = 0.0088 in HFD mice, P = 0.0016 in IM mice) and MuRF1 expression (P = 0.0004 in db/db mice, P = 0.0077 in HFD mice, P = 0.0451 in IM mice). MSC‐EXO replicated all these hucMSC‐mediated changes (P = 0.0103 for grip strength, P = 0.013 for muscle mass, P < 0.0001 for CSA of muscle fibres, P = 0.0171 for Atrogin1 expression, and P = 0.006 for MuRF1 expression). RNA‐seq revealed that hucMSCs activated the AMPK/ULK1 signalling and enhanced autophagy. Knockdown of AMPK or inhibition of autophagy with 3‐methyladenine (3‐MA) diminished the beneficial anti‐atrophy effects of hucMSCs or MSC‐EXO.ConclusionsOur results suggest that human umbilical cord mesenchymal stromal cells mitigate diabetes‐ and obesity‐induced muscle atrophy via enhancing AMPK/ULK1‐mediated autophagy through exosomes, with implications of applying hucMSCs or hucMSC‐derived exosomes to treat muscle atrophy.

Funder

National Natural Science Foundation of China

Taishan Scholar Foundation of Shandong Province

Publisher

Wiley

Subject

Physiology (medical),Orthopedics and Sports Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3