Fast Bayesian modal identification with known seismic excitations

Author:

Wang Peixiang12ORCID,Li Binbin12ORCID,Zhang Fengliang3ORCID,Chen Xiaoyu12,Ni Yanchun4

Affiliation:

1. ZJU‐UIUC Institute Zhejiang University Haining China

2. College of Civil Engineering and Architecture Zhejiang University Hangzhou China

3. School of Civil and Environmental Engineering Harbin Institute of Technology Shenzhen China

4. Department of Bridge Engineering Tongji University Shanghai China

Abstract

AbstractFast and accurate identification of structural modal parameters after an earthquake is crucial for assessing structural conditions and facilitating repair. With the development of modern earthquake observation techniques, the recorded ground motion can be leveraged as extra input information for modal identification, enabling the experimental modal analysis applicable. This study develops a Bayesian modal identification algorithm that aims at estimating the most probable value (MPV) of modal parameters and their identification uncertainty. Incorporating the recorded seismic input, the algorithm utilizes with the structural equation of motion in the frequency domain to formulate the likelihood function and adopts a constrained Laplace method for Bayesian posterior approximation of modal parameters. With the aid of complex matrix calculus, an iterative scheme is developed, allowing a fast search of the MPV of modal parameters and an analytical evaluation of the posterior covariance matrix. The performance of the proposed algorithm is validated by examples with synthetic, laboratory and field data, respectively. In addition, its effectiveness on predicting structural responses under a future earthquake is illustrated, showing its potential for various downstream applications in seismic structural health monitoring.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3