Affiliation:
1. Department of Materials Science and Engineering Chonnam National University Gwangju 500–757 South Korea
2. Institute for Superconducting & Electronic Materials (ISEM) Australian Institute of Innovative Materials (AIIMs) University of Wollongong North Wollongong, New South Wales 2500 Australia
3. Department of Energy Engineering Hanyang University Seoul 04763 Republic of Korea
Abstract
AbstractManganese‐ion batteries (MIBs) involving aqueous electrolytes are regarded as next‐generation energy‐storage systems for utilization in safe and non‐flammable, grid‐scale energy‐storing appliances. For practical application, it is very important to establish a stable cathode with a high capacity and stable cycle life. In this respect, vanadium‐based layered oxides have been well demonstrated as suitable cathodes for aqueous‐electrolyte‐based batteries due to their high theoretical capacity and adequate working voltage. However, the dissolution of vanadium in the aqueous electrolyte directly affects the cycle life of the vanadium‐based layered oxides. In the present study, a carbon‐coating approach is established to boost the rate capability and cycling stability of the NaV6O15 (NVO) cathode. When employed as a cathode for MIBs, the carbon‐coated NaV6O15 (NVO/C) supplies a stable recoverable capacity of 149 mAh g−1 at 0.4 A g−1 after the 1600 consecutive cycles with 88 % capacity retention, along with a rapid Mn2+ storage ability of 6000 cycles at 3.0 A g−1 with 74 % capacity retention.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献