Functional Oriented Design of Composite Artificial Interface Layers Towards Stable Zinc Anodes In Aqueous Zinc‐ion Batteries

Author:

Zhang Xiaoyu1,Jin Weihua1,Liu Min1,Zhao Yong2,Zhang Peng1

Affiliation:

1. Department of Chemistry College of Science Northeastern University Shenyang 110819 Liaoning PR China

2. Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 PR China

Abstract

AbstractRechargeable aqueous zinc‐ion batteries (AZIBs) with metallic Zn anodes have been regarded as attractive candidates for large‐scale energy storage systems due to their affordability, safety, and high energy density. However, the practical implementation of rechargeable AZIBs is still hampered severely by the poor electrochemical stability and reversibility of Zn anodes, stemming from uncontrolled dendrite growth and rampant side reactions. Due to the versatility of different components in the composite artificial interface layer (AIL), great efforts on multifunctional AILs have recently been devoted to Zn anode protection for designing durable and stable AZIBs. This review first presents a comprehensive and timely summarization on the origin and mechanism of dendrite growth and side reactions, followed by the systematic summarization of five protection mechanisms/functions of the AILs. Next, recent advances are discussed in the manner of a correlation between the combined materials/structures in composite AILs and their synergetic functionality, highlighting the critical role of functional orientation design of the composite AILs towards stable Zn anodes. Finally, perspectives and suggestions are provided for designing highly effective multifunctional composite AILs towards Zn anodes for AZIBs.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Electrical and Electronic Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3