Surveyor and analyst biases in forest density estimation from United States Public Land Surveys

Author:

Cogbill Charles V.1

Affiliation:

1. Harvard Forest, Harvard University Petersham Massachusetts USA

Abstract

AbstractAccurate forest density estimates based on United States Public Land Surveys have long been questioned because of doubts about randomness of both the surveyors' selection of witness trees and the underlying tree dispersion. This study analyzes the surveyor sampling of witness trees in six Midwestern states in the mid‐1800s. It develops universal methods for identification, quantification, and correction of bias, and then calculation of unbiased density. Applying these techniques produces unbiased site‐specific densities before Euro‐American settlement, which are the essential baseline for determining historic changes in forest structure. Previous analysts used untested assumptions, inaccurate estimators, unknown or unrealistic sampling designs, and omitted or poorly corrected surveyor bias, resulting in hundreds of unreliable density estimates. The surveyors' recording of the empirical distance, bearing, and diameter of witness trees documented the exact sampling design. The intended design and deviation from it are investigated with a combination of descriptive statistics, probability theory, computer simulations, analogue geometric models, and modern stand conditions. Herein, analyst bias is eliminated using the robust Morisita II density estimator matching the predominant sampling design of two trees in opposing semicircles. Six widespread surveyor biases deviating from the nearest tree to the corner are evaluated. Quadrant bias and diameter bias for medium‐sized trees are subsumed under newly framed design and small tree biases. Two novel surveyor positional biases (pair angle and near‐post) are introduced here. Previously recognized azimuthal and species biases are analyzed with new techniques. Widely postulated surveyor bias for certain species was found to be minimal. Bias correction and density estimation are applied in detail over 68 townships in northern Wisconsin. The estimated historical forest density in northern Wisconsin, corrected for bias and small tree truncation, averaged 323 trees/ha ≥20 cm. Over 80 Midwestern subregions, surveyors bypassed an estimated 17% of the nearest trees due to their position, resulting in an average bias correction of +24% over the base density. If censored trees below a 20‐cm “veil‐line” are considered, the surveyors bypassed 48% of the nearest trees >12.7 cm in diameter. This study resolves a 70‐year‐old conundrum of surveyor and analyst biases in historical density estimation.

Funder

National Science Foundation

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference114 articles.

1. Oak Forests and Woodlands as Indigenous Landscapes in the Eastern United States;Abrams M. D.;Bulletin of the Torrey Botanical Society,2022

2. The Presettlement Vegetation of Williamson County, Illinois;Anderson R. C.;Castanea,1975

3. Modifying Distance Methods to Improve Estimates of Historical Tree Density from General Land Office Survey Records1

4. Distance Measurements in Vegetation Study

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3