Thinning followed by slash burning enhances growth and reduces vulnerability to drought for Pinus nigra

Author:

Vilà‐Vilardell Lena1ORCID,Valor Teresa1ORCID,Hood‐Nowotny Rebecca2ORCID,Schott Katharina2ORCID,Piqué Míriam1ORCID,Casals Pere1ORCID

Affiliation:

1. Joint Research Unit CTFC – AGROTECNIO Solsona Spain

2. Department of Forest and Soil Sciences Institute of Soil Research, University of Natural Resources and Life Sciences Vienna Tulln Austria

Abstract

AbstractIncreasingly frequent severe drought events are pushing Mediterranean forests to unprecedented responses. Lack of management leads to dense forests that are highly susceptible to drought stress, potentially resulting in extensive dieback and increased vulnerability to other disturbances. Forest treatments like thinning and slash burning reduce competition for resources and have the potential to enhance tree growth and vigor and minimize tree vulnerability to drought. Here, we used tree rings to study the growth and physiological response of black pine (Pinus nigra) to drought in northeastern Spain under different treatments, including two thinning intensities (light and heavy, with 10% and 40% basal area reduction, respectively) followed by two understory treatments (clearing alone and in combination with slash burning), resulting in a research design of four treatments plus an untreated control with three replicates. Specifically, we studied basal area increment (BAI), resilience indices, and intrinsic water use efficiency (iWUE) using carbon and oxygen isotope composition (δ13C and δ18O in tree‐ring cellulose) before and after treatments. Our results showed that BAI and resistance to drought increased in the heavy‐thin (burned and unburned) and light‐thin burned units. Resilience increased in the burned units regardless of the thinning intensity, while recovery was not affected by treatment. Slash burning additionally increased BAI in the light‐thin and resistance and resilience in the heavy‐thin units compared with clearing alone. The stable isotope analysis revealed a minor effect of treatments on δ13C and δ18O. No change in iWUE among treatments was presumably linked to a proportional increase in both net CO2 assimilation and stomatal conductance, which particularly increased in the heavy‐thin (burned and unburned) and light‐thin burned units, indicating that these trees were the least affected by drought. This study shows that management approaches aimed at reducing wildfire hazard can also increase the vigor of dominant trees under drought stress. By reducing competition both from the overstory and the understory, thinning followed by clearing alone or in combination with slash burning promotes tree growth and vigor and increases its resistance and resilience to drought.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3