Three EHDA Processes from a Detachable Spinneret for Fabricating Drug Fast Dissolution Composites

Author:

Chen Shu12,Zhou Jianfeng3,Fang Boya3,Ying Yue3,Yu Deng‐Guang3ORCID,He Hua4

Affiliation:

1. Fashion Institute Donghua University Shanghai 200051 China

2. Key Laboratory of Clothing Design & Technology Ministry of Education Donghua University Shanghai 200051 China

3. School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China

4. The Third Affiliated Hospital Naval Medical University Shanghai 200433 China

Abstract

AbstractIn this study, three kinds of electrohydrodynamic atomization (EHDA) processes (electrospraying, electrospinning, and coaxial electrospinning) are implemented to create hydroxypropyl methylcellulose (HPMC) based ultra‐thin products for providing the fast dissolution of a poorly water‐soluble drug ketoprofen (KET). An EHDA apparatus, characterized by a novel spinneret, is homemade for conducting the three processes. The three types of products are electrospun nanofibers E1, electrosprayed microparticles E2, and core‐shell nanofibers E3. SEM and TEM results indicate that they have the anticipated morphologies and inner structures. X‐ray diffraction and Fourier Transform Infrared results verify that KET is mainly amorphous in all the composites due to its fine compatibility with HPMC. In vitro dissolution tests demonstrate that the drug rapid release performances has an order of E3>E1>E2≫KET powders. The fast dissolution mechanisms are suggested and the advantages of the three products are compared. The super performance of E3 in furnishing the rapid release is attributed to a synergistic action of small size (of the shell thickness), high porosity, amorphous state of drug, and the solubility of HPMC. EHDA nanostructures can support the development of nano drug delivery systems (DDSs) through tailoring the spatial distribution of drug molecules within the nano products.

Funder

Natural Science Foundation of Shanghai Municipality

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Organic Chemistry,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3