Poly(ethylene‐glycol)‐Dimethacrylate (PEGDMA) Composite for Stereolithographic Bioprinting

Author:

Chang Shu‐Yung1ORCID,Lee Joseph Zhi Wei1,Sargur Ranganath Anupama12,Ching Terry123ORCID,Hashimoto Michinao12ORCID

Affiliation:

1. Pillar of Engineering Product Development Singapore University of Technology and Design Singapore 487372 Singapore

2. Digital Manufacturing and Design Centre Singapore University of Technology and Design Singapore 487372 Singapore

3. Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore

Abstract

AbstractRecent progress in additive manufacturing has enabled the application of stereolithography (SLA) in bioprinting to produce 3D biomimetic structures. Bioinks for SLA often require synthetic polymers as supplements to ensure the structural integrity of the printed cell‐laden constructs. High molecular weight (MW) poly(ethylene‐glycol)‐diacrylate (PEGDA) (MW ≥ 3400 Da) is commonly used to enhance the mechanical property of crosslinked hydrogels. However, the production of bioink with high MW PEGDA requires in‐house polymer synthesis or the acquisition of costly reagents, which may not be readily available in all laboratory settings. As an alternative to high MW PEGDA, this research investigated the use of poly(ethylene‐glycol)‐dimethacrylate (PEGDMA) (MW = 1000 Da) as a supplement of a bioink to enhance the mechanical properties of the SLA‐printed constructs. The successful demonstration showcases 1) the fabrication of 3D constructs with overhang and complex architecture, and 2) the cytocompatibility, with high cell viability of 71–87% over 6 days of culture, of the GelMA‐PEGDMA bioink to enable cell‐laden bioprinting. This study suggests PEGDMA as a viable supplement in the formulation of SLA bioink. The accessibility to PEGDMA will facilitate the advance in 3D bioprinting to fabricate complex bioinspired structures and tissue surrogates for biomedical applications.

Funder

Ministry of Education - Singapore

Agency for Science, Technology and Research

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3