Scalable Fabrication of Self‐Reinforced Bioplastic Composites Using Short Fiber Reinforcements

Author:

Aziz Shazed12ORCID,Colwell John1,Heidarian Pejman3ORCID,Mathel Vincent12,Gauthier Emilie12ORCID,McNally Tony4ORCID,Peijs Ton5ORCID,Varley Russell J.3ORCID,Halley Peter J.12ORCID,Vandi Luigi‐Jules62ORCID

Affiliation:

1. School of Chemical Engineering The University of Queensland Brisbane QLD 4072 Australia

2. Centre for Advanced Materials Processing and Manufacturing (AMPAM) The University of Queensland Brisbane QLD 4072 Australia

3. Carbon Nexus at the Institute for Frontier Materials Deakin University Geelong VIC 3216 Australia

4. International Institute for Nanocomposites Manufacturing (IINM) WMG University of Warwick Coventry CV4 74L UK

5. Centre for Polymers and Composites (CPC) WMG University of Warwick Coventry CV4 74L UK

6. School of Mechanical and Mining Engineering The University of Queensland Brisbane QLD 4072 Australia

Abstract

AbstractBioplastics and biocomposites are eco‐friendly alternatives to their petrochemical derived commodity material, but tend to have inferior mechanical and thermal properties. In this work, short‐fiber self‐reinforced bioplastic composites (SRBCs) have been developed that seek to overcome some of these shortcomings. The SRBCs leverage melt‐spun drawn poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) fibers with axially‐oriented crystalline structures that exhibit a ≈6.7 °C higher melt temperature than the same PHBV in isotropic form. This enables a controlled‐temperature compounding process that preserves the crystalline structure of the fibers without distortion and ensures uniform distribution within the matrix. The resultant composites display a ≈35% increase in ultimate tensile strength and a ≈55% increase in impact resistance compared to neat PHBV polymer. This monolithic‐type composite system, characterized by high interfacial compatibility and strong fiber‐matrix adhesion, also supports high‐value recycling while preserving its mechanical properties across multiple lifecycle uses. By focusing upon discontinuous short fiber reinforcement, this work provides unprecedented opportunities for scaling SRBCs through commodity application pathways such as injection molding, compression molding, and 3D printing.

Funder

Australian Research Council

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3