Design of Hygroscopic Bioplastic Products Stable in Varying Humidities

Author:

Liu Sirui1,Bettelli Mercedes A.1,Wei Xinfeng1,Capezza Antonio J.1,Sochor Benedikt2,Nilsson Fritjof1,Olsson Richard T.1,Johansson Eva3,Roth Stephan V.12,Hedenqvist Mikael S.1ORCID

Affiliation:

1. Department of Fiber and Polymer Technology Polymeric Materials Division School of Engineering Sciences in Chemistry Biotechnology and Health KTH Royal Institute of Technology Stockholm 10044 Sweden

2. Deutsches Elektronen‐Synchrotron DESY Notkestraße 85 D‐22607 Hamburg Germany

3. Department of Plant Breeding Swedish University of Agricultural Sciences P.O. Box 190 Lomma SE‐234 22 Sweden

Abstract

AbstractHygroscopic biopolymers like proteins and polysaccharides suffer from humidity‐dependent mechanical properties. Because humidity can vary significantly over the year, or even within a day, these polymers will not generally have stable properties during their lifetimes. On wheat gluten, a model highly hygroscopic biopolymer material, it is observed that larger/thicker samples can be significantly more mechanically stable than thinner samples. It is shown here that this is due to slow water diffusion, which, in turn, is due to the rigid polymer structure caused by the double‐bond character of the peptide bond, the many bulky peptide side groups, and the hydrogen bond network. More than a year is required to reach complete moisture saturation (≈10 wt.%) in a 1 cm thick plate of glycerol‐plasticized wheat gluten, whereas this process takes only one day for a 0.5 mm thick plate. The overall moisture uptake is also retarded by swelling‐induced mechanical effects. Hence, hygroscopic biopolymers are better suited for larger/thicker products, where the moisture‐induced changes in mechanical properties are smeared out over time, to the extent that the product remains sufficiently tough over climate changes, for example, throughout the course of a year.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Organic Chemistry,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3