Bio‐Based Nanofiber Membranes for Effective Air Filtration: Fabrication and Evaluation of Flame‐Retardant Behavior, Mechanical Properties, and Filtration Performance

Author:

Keyvani Sepideh1,Golbabaei Farideh1,Neisiany Rasoul Esmaeely23ORCID,Das Oisik4ORCID,Foroushani Abbas Rahimi5,Kalantary Saba1

Affiliation:

1. Department of Occupational Health School of Public Health Tehran University of Medical Sciences Tehran 1417613151 Iran

2. Department of Polymer Engineering Hakim Sabzevari University Sabzevar 9617976487 Iran

3. Biotechnology Centre Silesian University of Technology Krzywoustego 8 Gliwice 44–100 Poland

4. Department of Civil, Environmental and Natural Resources of Engineering Luleå University of Technology Luleå 97187 Sweden

5. Department of Epidemiology and Biostatistics School of Public Health Tehran University of Medical Sciences Tehran 1417613151 Iran

Abstract

AbstractElectrospun nanofibers can lower health risks linked to exposure to particulate matter pollutants. On the other hand, nonbiodegradable polymeric materials increase issues related to their disposal and the generation of hazardous microplastics. Hence, this research aims to develop a nanofibrous membrane filter composed of polyvinyl alcohol (PVA) as a biodegradable polymer, and boric acid (BA) using an electrospinning technique. This study investigates the effect of BA on fire behavior, mechanical properties, and filtration performance of the nanofiber membranes. The morphological results show that the samples containing BA have no beads on the nanofibers. Incorporating boric acid into PVA membranes can reduce peak release heat by ≈39%. Additionally, the nanofibers containing BA can offer enhanced mechanical properties of tensile strain (≈3.6%) and Young's modulus (up to ≈45%). The optimized BA/PVA nanofibers can also demonstrate superior filtration efficiency (above 99.9% for 300 nm particles) and a low‐pressure drop (150 Pa at 5.3 cm s−1 airflow velocity). Therefore, PVA nanofibers containing BA can improve not only the fire behavior than those of pure PVA nanofibers, but also increase mechanical properties, and filtration performance.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3