Affiliation:
1. Institute of Materials Technology (ITM) Technical University of Valencia (UPV) Plaza Ferrándiz y Carbonell 1 Alcoy Alicante 03801 Spain
2. Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM) Technical University of Valencia (UPV) Plaza Ferrándiz y Carbonell s/n Alcoy 03801 Spain
Abstract
AbstractDiethyl l‐tartrate (DET) is used as a biobased plasticizer for poly(lactide) (PLA) formulations with improved ductile properties without compromising biodegradation. Different weight percentages (wt.%) of DET in the 0–50 wt.% range are added to PLA by melt compounding and subsequently processed by injection molding. The effect of wt.% DET on mechanical, thermal, thermo‐mechanical, morphology, biodegradation, and crystallinity is studied. Addition of 20 wt.% DET leads to a noticeable increase in elongation at break up to values of 567%, which is quite an interesting result considering the extreme brittleness of PLA. These results are verified by field emission scanning electron microscopy (FESEM) images, where filament‐like structures are observed, indicative of an effective plasticization. Differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) show that the glass transition temperature of PLA is drastically decreased down to values of 23 °C for the sample with the highest amount of DET (50 wt.%), thus increasing its ductility and processability. Fourier‐transformed infrared spectroscopy (FTIR) spectra show that there exists chemical interactions between PLA and DET. Finally, the biodegradability analysis proves that the developed blends are fully biodegradable, achieving complete disintegration after 49 days. It is observed that DET enhanced the disintegration rate of PLA.
Funder
Conselleria de Cultura, Educación y Ciencia, Generalitat Valenciana
Agencia Estatal de Investigación
Universitat Politècnica de València
Subject
Materials Chemistry,Polymers and Plastics,Organic Chemistry,General Chemical Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献