Affiliation:
1. Department of Economics and Law Technische Universität Berlin Berlin Germany
2. Department of Computer Engineering and Microelectronics Technische Universität Berlin Berlin Germany
Abstract
AbstractMotivated by the recent literature that finds that artificial neural networks (NN) can efficiently predict economic time‐series in general and inflation in particular, we investigate if the forecasting performance can be improved even further by using a particular kind of NN—a recurrent neural network. We use a long short‐term memory recurrent neural network (LSTM) that was proven to be highly efficient for sequential data and computed univariate forecasts of monthly US CPI inflation. We show that even though LSTM slightly outperforms autoregressive model (AR), NN, and Markov‐switching models, its performance is on par with the seasonal autoregressive model SARIMA. Additionally, we conduct a sensitivity analysis with respect to hyperparameters and provide a qualitative interpretation of what the networks learn by applying a novel layer‐wise relevance propagation technique.
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献