Shape memory polylactic acid/modified Eucommia ulmoides gum thermoplastic vulcanizates based on excellent interfacial adhesion and co‐continuous structure

Author:

Wang Yan1ORCID,Pei Xianqiang123,Pei Qianyao12,Zhang Zhancheng1,Zhang Yaoming1,Wang Qihua1,Wang Tingmei1

Affiliation:

1. State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou China

2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China

3. Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering Yantai China

Abstract

AbstractTowards the goal of developing renewable, biocompatible and intelligent polymer materials, natural Eucommia ulmoides gum (EUG) was modified via epoxidation and then the epoxidized EUG (EEUG) was compounded with another sustainable and biobased polymer, polylactic acid (PLA), to develop shape memory thermoplastic vulcanizates (TPVs) through reactive blending. The prepared PLA/EEUG TPVs displayed not only enhanced toughness but also greatly improved shape recovery ability, which was generated from the co‐continuous phase structure and excellent interfacial adhesion induced by in situ compatibilization during reactive blending. It is shown that dicumyl peroxide content exerted little influence on the toughness of the TPVs. However, heat‐triggered shape memory effects of the TPVs were significantly affected by the dicumyl peroxide content with a decrease in deformation ratio (Δε) from 163.51% to 128.36% and an increase in shape recovery ratio (Rr) from 73.32% to 91.93%. The findings of the present study offer an idea for the industrialization of biocompatible and smart materials for biomedical applications. © 2024 Society of Industrial Chemistry.

Publisher

Wiley

Subject

Polymers and Plastics,Materials Chemistry,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3