Affiliation:
1. Livestock Research Institute Aomori Prefectural Industrial Technology Research Center Noheji Aomori Japan
2. Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture Hokkaido University Sapporo Hokkaido Japan
3. Graduate School of Global Food Resources Hokkaido University Sapporo Hokkaido Japan
Abstract
AbstractIn many mammals, including ruminants, pregnancy requires pregnancy recognition signaling molecules secreted by the conceptus; however, the mechanism underlying pregnancy establishment in cattle remains unknown. Trophoblastic vesicles (TVs) are artificially produced from the extraembryonic tissues of the elongating conceptus and may be useful tools for understanding conception. This study investigated the morphological and functional properties of TVs in comparison to those of intact conceptuses. TVs were prepared from the extraembryonic tissues of conceptuses collected 14 days after artificial insemination (AI), cryopreserved immediately after dissection, and cultured after thawing for subsequent transplantation into the uterus. The transferred TVs were collected 7 days after transplantation and compared with extraembryonic tissue samples collected from conceptuses at 21 days post‐AI. The recovered TVs were 40 times longer than those of their pre‐transplant counterparts. Microscopic evaluation revealed that their membrane structures consisted of trophoblast and hypoblast layers. The expression patterns of the cell differentiation markers, CDX2, SOX2, and GATA6, and interferon tau (IFNT) protein expression levels in the TVs were similar to those in control extraembryonic tissue samples. These findings suggest that TVs are capable of morphological elongation and maintain IFNT production in a similar way as original trophoblasts.