The relative importance of metabolic rate and body size to space use behavior in aquatic invertebrates

Author:

Shokri Milad12ORCID,Marrocco Vanessa13ORCID,Cozzoli Francesco124,Vignes Fabio1,Basset Alberto1234

Affiliation:

1. Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies University of Salento Lecce Italy

2. National Biodiversity Future Center (NBFC) Palermo Italy

3. LifeWatch ERIC, Service Centre, Campus Ecotekne Lecce Italy

4. Research Institute on Terrestrial Ecosystems (IRET) – National Research Council of Italy (CNR) via Salaria Monterotondo Scalo (Rome) Italy

Abstract

AbstractElucidating the underlying mechanisms behind variations of animal space and resource use is crucial to pinpoint relevant ecological phenomena. Organism's traits related to its energy requirements might be central in explaining behavioral variation, as the ultimate goal of a forager is to fulfill its energy requirements. However, it has remained poorly understood how energy requirements and behavioral patterns are functionally connected. Here we aimed to assess how body mass and standard metabolic rate (SMR) influence behavioral patterns in terms of cumulative space use and time spent in an experimental patchy environment, both within species and among individuals irrespective of species identity. We measured the behavioral patterns and SMR of two invertebrate species, that is, amphipod Gammarus insensibilis, and isopod Lekanesphaera monodi, individually across a range of body masses. We found that species of G. insensibilis have higher SMR level, in addition to cumulatively exploring a larger space than L. monodi. Cumulative space use scaled allometrically with body mass, and it scaled isometrically with SMR in both species. While time spent similarly in both species was characterized by negative body mass and SMR dependence, it was observed that L. monodi individuals tended to stay longer in resource patches compared to G. insensibilis individuals. Our results further showed that within species, body mass and metabolic rate explained a similar amount of variation in behavior modes. However, among individuals, regardless of species identity, SMR had stronger predictive power for behavioral modes compared to body mass. This suggests that SMR might offer a more generalized and holistic description of behavioral patterns that extend beyond species identity. Our study on the metabolic and body mass scaling of space and resource use behavior sheds light on higher‐order ecological processes such as species' competitive coexistence along the spatial and trophic dimensions.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3