Mathematical models of cystic fibrosis as a systemic disease

Author:

Olivença Daniel V.1,Davis Jacob D.2,Kumbale Carla M.2,Zhao Conan Y.3,Brown Samuel P.4,McCarty Nael A.5,Voit Eberhard O.2ORCID

Affiliation:

1. Center for Engineering Innovation The University of Texas at Dallas Richardson Texas USA

2. Department of Biomedical Engineering Georgia Tech and Emory University Atlanta Georgia USA

3. Mayo Clinic Alix School of Medicine Mayo Clinic Rochester Minnesota USA

4. Department of Biological Sciences Georgia Tech and Emory University Atlanta Georgia USA

5. Department of Pediatrics Emory University School of Medicine Atlanta Georgia USA

Abstract

AbstractCystic fibrosis (CF) is widely known as a disease of the lung, even though it is in truth a systemic disease, whose symptoms typically manifest in gastrointestinal dysfunction first. CF ultimately impairs not only the pancreas and intestine but also the lungs, gonads, liver, kidneys, bones, and the cardiovascular system. It is caused by one of several mutations in the gene of the epithelial ion channel protein CFTR. Intense research and improved antimicrobial treatments during the past eight decades have steadily increased the predicted life expectancy of a person with CF (pwCF) from a few weeks to over 50 years. Moreover, several drugs ameliorating the sequelae of the disease have become available in recent years, and notable treatments of the root cause of the disease have recently generated substantial improvements in health for some but not all pwCF. Yet, numerous fundamental questions remain unanswered. Complicating CF, for instance in the lung, is the fact that the associated insufficient chloride secretion typically perturbs the electrochemical balance across epithelia and, in the airways, leads to the accumulation of thick, viscous mucus and mucus plaques that cannot be cleared effectively and provide a rich breeding ground for a spectrum of bacterial and fungal communities. The subsequent infections often become chronic and respond poorly to antibiotic treatments, with outcomes sometimes only weakly correlated with the drug susceptibility of the target pathogen. Furthermore, in contrast to rapidly resolved acute infections with a single target pathogen, chronic infections commonly involve multi‐species bacterial communities, called “infection microbiomes,” that develop their own ecological and evolutionary dynamics. It is presently impossible to devise mathematical models of CF in its entirety, but it is feasible to design models for many of the distinct drivers of the disease. Building upon these growing yet isolated modeling efforts, we discuss in the following the feasibility of a multi‐scale modeling framework, known as template‐and‐anchor modeling, that allows the gradual integration of refined sub‐models with different granularity. The article first reviews the most important biomedical aspects of CF and subsequently describes mathematical modeling approaches that already exist or have the potential to deepen our understanding of the multitude aspects of the disease and their interrelationships. The conceptual ideas behind the approaches proposed here do not only pertain to CF but are translatable to other systemic diseases.This article is categorized under: Congenital Diseases > Computational Models

Funder

Centers for Disease Control and Prevention

Cystic Fibrosis Foundation

Publisher

Wiley

Subject

Cell Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3